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Abstract 24 

Functional neuroimaging experiments that employ naturalistic stimuli (natural scenes, 25 

films, spoken narratives) provide insights into cognitive function “in the wild”. Natural 26 

stimuli typically possess crowded, spectrally dense, dynamic, and multimodal 27 

properties within a rich multiscale structure. However, when using natural stimuli, 28 

various challenges exist for creating parametric manipulations with tight experimental 29 

control. Here, we revisit the typical spectral composition and statistical dependences 30 

of natural scenes, which distinguish them from abstract stimuli. We then demonstrate 31 

how to selectively degrade subtle statistical dependences within specific spatial scales 32 

using the wavelet transform. Such manipulations leave basic features of the stimuli, 33 

such as luminance and contrast, intact. Using functional neuroimaging of human 34 

participants viewing degraded natural images, we demonstrate that cortical responses 35 

at different levels of the visual hierarchy are differentially sensitive to subtle statistical 36 

dependences in natural images. This demonstration supports the notion that 37 

perceptual systems in the brain are optimally tuned to the complex statistical 38 

properties of the natural world. The code to undertake these stimulus manipulations, 39 

and their natural extension to dynamic natural scenes (films), is freely available. 40 

 41 

Keywords 42 

Visual cortex, image processing, 3T, fMRI, human, natural images, film stimuli, 43 

toolbox, dynamic natural scenes  44 
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1. Introduction 45 

Although the entire possible set of images that could be constructed (or imagined) is 46 

incredibly vast, the actual set of images encountered in the natural environment 47 

represents but a small subset of these possibilities (Field, 1994). All natural images 48 

share a number of characteristics, and this restricts the degree to which natural images 49 

occupy the state-space of all possible images. For example, the intensities, colors, 50 

and spectral properties of adjacent regions of a natural image are similar – with the 51 

correlation decreasing with distance (Burton and Moorhead, 1987; Frazor and Geisler, 52 

2006). This lower-order pattern of pairwise correlations is, however, only part of the 53 

picture. Natural images also share a number of higher-order statistical relationships 54 

(Graham et al., 2016; Hermundstad et al., 2014; Karklin and Lewicki, 2009; Tkacik et 55 

al., 2010). For example, spectral properties at one spatial scale (such as high contrast 56 

edges) are conditionally dependent on those at other scales (such as shading and 57 

contours). Together, these statistical properties impart the spatial structure typical of 58 

natural images – that is, they produce the patterns we associate with trees, forests, 59 

faces, rivers, rocks, and the like.  60 

 61 

Given that all natural images are structured in a statistically similar way, it is not 62 

surprising that the mammalian visual system appears to be specifically tuned for this 63 

structure. A great deal of work has been done to elucidate the response properties of 64 

neurons in the visual cortex of a number of mammals (e.g., cat, monkey, and man) 65 

(Hubel and Wiesel, 1959, 1968; Yoshor et al., 2007). Across these species, it has 66 

been shown that the receptive fields in primary visual cortex are spatially localized, 67 

oriented, and selective to structure at various spatial scales (i.e., acting as bandpass 68 

filters) (Field, 1999). It has been suggested that, by being sensitive to specific spatial 69 
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frequencies and orientations, the simple cells in primary visual cortex are matched to 70 

the higher-order structure found in natural images. Pertinently, it has been shown that 71 

filters modeled after these simple cells (i.e., similar orientation and bandpass 72 

parameters) respond with a high degree of kurtosis when presented with images of 73 

natural scenes. That is, they respond particularly precisely to local features in natural 74 

scenes with properties matched to their preferred stimulus properties. Moreover, this 75 

kurtosis diminishes when the filter parameters differ from those found in the 76 

mammalian visual system (Sekuler and Bennett, 2001) so that they respond less 77 

precisely and more diffusively to local stimulus features. This has been interpreted as 78 

evidence that the visual system is developed to optimize the coding of natural image 79 

content as the high degree of kurtosis leads to sparse, distributed responses – an 80 

efficient coding strategy whereby most of the information for each instance of a specific 81 

natural scene is represented by a small, unique set of cells (Field, 1999).  82 

 83 

To account for such response properties of neurons in primary visual cortex and their 84 

sparse coding of natural image content, it has been shown that receptive fields can be 85 

represented mathematically by a wavelet-like transform. The wavelet transform is 86 

similar to the more widely known Fourier transform in the sense that it can decompose 87 

a very broad variety of functions and empirical data into a set of oscillatory basis 88 

functions. However, rather than transforming the data into a domain of simple sine and 89 

cosine functions, the wavelet transform represents the data with more complex 90 

functions – called wavelets (Graps, 1995). These functions are localized in space and 91 

process data at different spatial scales – similar to the receptive fields in mammalian 92 

visual cortex. Importantly, whereas successive frequencies in the Fourier domain are 93 

linearly spaced, successive wavelet scales are dyadic and hence logarithmically 94 
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spaced – that is, every scale is twice (or half) the frequency than the level above (or 95 

below). Hence, when applied to images of natural scenes, different wavelet functions 96 

are sensitive to the sparse, higher-order statistical structure that is present at different 97 

spatial scales (Field, 1999; Olshausen and Field, 1996).  98 

 99 

Understanding and manipulating the statistics of natural scenes holds potential to test 100 

the hypothesis that the visual system is tuned to their expected (typical) properties. 101 

Here we exploit the relationship between receptive field properties and wavelets to 102 

manipulate the higher-order statistical structure in natural scenes. This paper 103 

comprises two distinct but complementary parts. In the first part, we show how the 104 

wavelet transform can be used to parametrically degrade natural image structure: (1) 105 

at specific spatial scales, (2) in a global or locally-targeted fashion, and (3) for dynamic 106 

(i.e., films) as well as static scenes. We first provide a didactic introduction to wavelet 107 

resampling. We then provide novel extensions to adopt the procedure from its classic 108 

application in non-parametric inference to its use in naturalistic paradigms, preserving 109 

the color palette of stimuli, and manipulating dynamic natural scenes (films). We also 110 

present a novel extension using incremental resampling to more deeply probe the 111 

statistical structure of natural scenes and their relationship to other natural 112 

phenomena. In the second part, we demonstrate the utility of this approach by showing 113 

how it can be used to create stimuli that can be used along with fMRI to probe the 114 

hierarchy of human visual cortex – showing that cortical responses at different levels 115 

of the visual stream are differentially sensitive to the subtle, wavelet-based parametric 116 

statistical manipulations. 117 

 118 

2. Manipulating natural image structure – the wavelet transform 119 
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Natural images are usually defined as any image of the natural, physical, or material 120 

world and can portray general scenes (e.g., beaches, forests, mountain ranges) or 121 

specific objects (e.g., rocks, trees, waterfalls). Figure 1A, a photograph of a patch of 122 

fallen leaves, is an example of such a natural image. Contrasting this natural image 123 

with luminance-matched noise images (Fig. 1B,C) provides insight into the structure 124 

and properties of natural images. Figure 1B was generated by random assignment of 125 

pixel luminance values from Figure 1A (i.e., white noise) and has little in common with 126 

natural images. Figure 1C is also random but was generated with the additional 127 

constraint that the distribution of energy across spatial frequencies matched that of 128 

the natural image. That is, it is characterized by a similar 1/f amplitude spectrum (Fig. 129 

1D) — a property which describes the distribution of amplitude (luminance intensity) 130 

as a function of spatial frequency. Across natural scenes, the slope () of this 131 

distribution is remarkably similar with values typically ranging between 0.8-1.2 (Burton 132 

and Moorhead, 1987; Field, 1987; Ruderman and Bialek, 1994; Tolhurst et al., 1992; 133 

van der Schaaf and van Hateren, 1996). If the distribution of luminance intensity 134 

variations in nature was random and independent of spatial scale, then natural scenes 135 

would possess the amplitude spectra of white noise ( = 0) (Fig. 1B), where amplitude 136 

is the same across all spatial frequencies. 137 

 138 

Despite the similarity between the amplitude spectra of an actual natural scene (Fig. 139 

1A) and of “natural” (or colored) noise (Fig. 1C), one would have no trouble identifying 140 

the true natural scene. This demonstrates how matching lower-order statistical 141 

properties is insufficient to produce the structure present in natural images. Rather, 142 

the structure is a consequence of higher-order statistical relationships. Being able to 143 

parametrically manipulate these statistical dependences permits the controlled 144 
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investigation of how the visual system processes this structure and is the main 145 

objective of the wavelet technique described below.   146 

 147 
Figure 1. Difference between a natural image and noise. (A) Natural image. (B) Random noise. (C) 1/f 148 
noise. (D) Spatial frequency spectra for A-C. Note that the image in A is from the Zurich natural images 149 
database (Einhauser and Konig, 2003). 150 
 151 

To manipulate natural image structure using wavelets, the discrete wavelet transform 152 

(DWT) is first used to perform a multi-resolution decomposition of the image data 153 

(Breakspear et al., 2004). This decomposition uses a family of wavelet basis functions 154 

sensitive to variance at specific spatial scales. At each scale, the data are 155 

decomposed into two orthogonal components containing information about the 156 

variation in signal intensity at that spatial scale (i.e., the detail coefficients) and the 157 

residual of the signal after those and all smaller details have been removed (i.e., the 158 

approximation coefficients). Because the image data is two-dimensional, the detail 159 

coefficients are further decomposed into horizontal, vertical, and diagonal 160 
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components. Note that the original image can be recovered, without loss, by linearly 161 

adding the approximation of the signal at a specific spatial scale together with the 162 

details at that scale and all smaller scales. A more detailed description of the two-163 

dimensional DWT can be found in the Supplementary Material (S1). 164 

 165 

2.1 Degrading scale-specific information 166 

As emphasized above, the DWT yields a representation of the image data across a 167 

hierarchy of spatial scales. Whereas the original image is spatially correlated, the DWT 168 

is a “whitening” transform and adjacent wavelet coefficients are statistically 169 

independent (Bullmore et al., 2001). It is therefore possible to randomly permute the 170 

detail coefficients within any level of this hierarchy – essentially destroying the higher-171 

order statistical dependences at the specific spatial scale represented by that level 172 

without loss of energy. This crucially differs from smoothing, filtering, or adding noise 173 

to the data. Following this permutation, the inverse DWT is performed, yielding an 174 

image nearly identical to the original but without structure at the targeted spatial scale. 175 

Figure 2 illustrates the results of this process in which the structure present in a natural 176 

image (Fig. 2A) is degraded at individual spatial scales (Fig. 2B,C) as well as at 177 

multiple scales (Fig. 2D,E). Importantly, this process only degrades the higher-order 178 

statistical relationships while maintaining the lower-level image content such as the 179 

contrast, luminance histogram, and spatial frequency content (Fig. 2F).  180 
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 181 
Figure 2.  Using wavelets to degrade scale-specific natural image structure. (A) Intact natural image. 182 
(B) Natural image with fine scale structure degraded. (C) Natural image with coarse scale structure 183 
degraded. (D) Natural image with all scales of structure degraded except the fine scale (red arrows 184 
indicate examples of remaining fine scale structure). (E) Natural image with all scales of structure 185 
degraded (i.e.,1/f noise). (F) Spatial frequency spectra for A-E. Lowercase a-e show a zoomed-in view 186 
(upper-right quadrant only) of images A-E to aid observation of the manipulations.  187 
 188 
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Inspection of this process reveals the effects of degrading the structure present in a 189 

natural image at various spatial scales. Close inspection of Figure 2B(b) reveals that 190 

the very fine structures have been degraded – including veins of leaves and the sharp 191 

edges of the plant blades. This is in contrast to Figure 2C(c) in which the finer details 192 

are still present, but coarser structures (e.g., at the level of entire leaves) have been 193 

disrupted. Figure 2D(d) illustrates the effect of degrading the structure at all scales 194 

except the fine scale with the image being nearly devoid of all natural image structure. 195 

However, from what is otherwise a pure colored noise image, one can distinctly make 196 

out the very sharp edge details that were otherwise degraded in Figure 2B(b). Finally, 197 

Figure 2E(e) illustrates the effect of degrading this remaining scale of information 198 

(along with all others) – producing a colored noise image with no apparent natural 199 

image structure but with nearly identical low-level image content as the original natural 200 

image (Fig. 2F). That is, the original and wavelet scrambled (or “wavestrapped”) data 201 

are essentially identical in terms of very basic visual features (e.g., luminance, 202 

contrast, and spectral content). The more elusive properties that couple details, edges, 203 

and outlines to depth, shadows, and context – and that convey the meaningful 204 

properties of natural visual scenes – have been randomized. 205 

 206 

2.2 Wavestrapping can be spatially-localized. 207 

Unlike the Fourier transform, the wavelet basis functions are localized in space. This 208 

attribute makes it possible to use the wavelet transform to degrade natural image 209 

structure in a spatially-restricted manner, rather than uniformly across the entire 210 

image. The procedure is similar to that described above, except that only detail 211 

coefficients associated with a specific spatial domain are permuted before performing 212 

the inverse DWT – the detail coefficients outside that domain are left unchanged. The 213 
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result of such a spatially-restricted degradation are illustrated in Figure 3. Here, we 214 

have independently resampled the coefficients associated with the central region of a 215 

natural scene image and its surround. If fixating at the centre of the image, this 216 

procedure can be used to degrade natural image structure to probe foveal vs. 217 

peripheral visual processing. Notably, any spatial domain can be used to restrict the 218 

permutation process. This same basic procedure can hence be used to target 219 

processing associated with specific hemifields or quadrants of an image.  220 

 221 

 222 

Figure 3. Using wavelets to degrade a spatially-restricted area. (A) Intact natural image with yellow 223 
dashed circle denoting the targeted foveal region. (B) Natural image with only fine scale structure 224 
degraded near the fovea. (C) Natural image with all structure degraded near the fovea. Lowercase a-c 225 
show zoomed-in views of the central regions in A-C. 226 
 227 

2.3. Extension to color images 228 

The wavestrapping approach can be extended to color images (Fig. 4A). However, 229 

the addition of color information does require further considerations. While each pixel 230 

in a grayscale image can be described by a single number (intensity), color images 231 
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contain three numbers per pixel – one for each color channel: red, green, and blue. 232 

The simplest extension of the above randomization techniques to a color image is to 233 

degrade the spatial structure in each channel independently. However, doing so does 234 

not preserve the color palette (Fig. 4B). To preserve the original colors (the color 235 

equivalent of preserving the pixel amplitude distribution), the image structure within 236 

each channel needs to be permuted in the same way across channels. In practice this 237 

can be achieved by permuting the detail coefficients within each color channel 238 

beginning with the same random seed (Fig. 4C).  239 

 240 

 241 
Figure 4. Application to color images. (A) Intact natural image with RGB color channels. (B) Image with 242 
color channels degraded independently. (C) Image with color channels degraded identically. Note that 243 
the color palette is preserved in C but not B. This can most easily be seen by the examining the body 244 
of the wombat, which is tannish/brown in both A and C but mottled with red, green, and blue patches in 245 
B. Lowercase a-c show a zoomed-in view of the images for closer examination. Source photo from 246 
author A.M.P. 247 
  248 
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2.4 Extension to naturalistic movies 249 

The above principles can be extended to dynamic natural scenes – i.e., film stimuli. In 250 

this case there is the additional dimension of time. Film stimuli incorporate the rich 251 

temporal variations in our environment and hence can provide a more engaging and 252 

ecologically-valid naturalistic experience than traditional static images (Hasson et al., 253 

2004; Roberts et al., 2013; Sonkusare et al., 2019). The key consideration then is how 254 

to handle the temporal domain alongside the degradation of the spatial dimensions. 255 

One simple possibility is to permute the (spatial) wavelet coefficients within each frame 256 

independently, breaking the temporal structure associated with the scrambled spatial 257 

scales. However, this whitens the temporal spectra – introducing spurious high 258 

frequencies – as each frame differs abruptly from the preceding one. To fully preserve 259 

the temporal structure, one can use the same random seed for each frame (and for 260 

color videos, within each color channel too). Even with all spatial scales scrambled, 261 

preserving the temporal structure leaves an “imprint” of moving objects within the 262 

scene, as well as pans and cuts (see Supplementary Material S2, Sup Movie 1 for an 263 

example). Given the importance of motion to the visual system – including the 264 

“biological motion” of humans (Allison et al., 2000; Schultz and Pilz, 2009) – this 265 

preservation of apparent motion is crucial when permuting dynamic films in the wavelet 266 

domain to study the visual cortex. 267 

 268 

This second strategy of a constant random seed destroys higher order statistics in the 269 

spatial domain but leaves those in the temporal domain exactly preserved. Wavelet 270 

resampling can also be applied in the temporal domain, treating the video as a single 271 

multidimensional time series, rather than as a series of discrete two-dimensional 272 

images. Notably, temporal variance of dynamic natural scenes also possesses a 1/f 273 
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amplitude spectrum (Fig. 5A). This spatio-temporal wavestrapping can be achieved in 274 

two steps: parallel two-dimensional spatial resampling followed by parallel one-275 

dimensional temporal resampling (Fig. 5B). Alternatively, the entire film could be 276 

wavestrapped using a single three-dimensional DWT following the same principles as 277 

wavestrapping a single three-dimensional spatial object (such as a single whole-brain 278 

fMRI volume (Breakspear et al., 2004)), although this mixes together information from 279 

the spatial and temporal domains.  280 

 281 

Using wavelets to manipulate movie data in the time domain can also adopt extensions 282 

outlined above for spatial images – namely focusing on high or low temporal scales 283 

and/or choosing specific temporal moments (such as scene transitions) and leaving 284 

other blocks unchanged. Temporal resampling can also extend to the parallel stream 285 

of audio information. 286 

 287 

 288 
Figure 5. Extension of wavestrapping to movies. (A) Temporal spectrum from a film clip shown as the 289 
power spectral density (PSD) across temporal frequency. Note that the spectrum was calculated from 290 
the red channel, middle pixel of Supplementary Movie 1 using a 10 second window and 50% overlap. 291 
(B) Schema for two-step wavestrapping of films. In Step 1, each frame and at each time point is spatially 292 
resampled (indicated by orange arrows). The resampling procedure is identical at the same scale for 293 
each time point and each frame. In Step 2, the time series from each pixel from the spatially 294 
wavestrapped data is resampled in the temporal dimension (indicated by yellow arrows). The 295 
resampling procedure at the same scale for each voxel is identical. All resampling is performed in the 296 
wavelet domain after appropriate wavelet decomposition (two-dimensional for Step 1 and one-297 
dimensional for Step 2). 298 
  299 
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2.5 Thermodynamics of natural scenes 300 

Recent work has shown that static (Saremi and Sejnowski, 2013) and dynamic (Munn 301 

and Gong, 2018) natural scenes possess the statistical hallmarks of criticality – that 302 

is, they reside close to a phase transition (i.e., a statistical boundary) between order 303 

and disorder. Computational analyses of natural scenes using the methods of 304 

statistical mechanics has suggested that this phase transition resides within specific 305 

latent layers of a natural scene (Saremi and Sejnowski, 2013) and is associated with 306 

thermodynamic “frustration” (see Supplementary Material, S3). By residing near these 307 

phase transitions, natural scenes are able to reflect a critical balance between (1) the 308 

ordered arrangement of the contours, edges, and textures of various sizes that endow 309 

it with structure and information and (2) the idiosyncratic and haphazard nature of this 310 

arrangement into the objects that characterize any specific scene and hence yield its 311 

semantic meaning and unique visual impression. 312 

 313 

By applying our wavestrapping approach progressively it is possible to demonstrate 314 

the balance between order and disorder inherent to natural images (Figure 6). This is 315 

because the randomization can be realized in varying degrees of depth, from just a 316 

few permuted coefficients up to full permutation. This is achieved by selecting random 317 

subsets of coefficients for permutation, leaving others invariant. Figure 7A and Movie 318 

1 both demonstrate the process of progressively disordering a natural image, which 319 

can be thought of as “heating” the scene. As can be seen in Figure 7B, the amount of 320 

variability between realizations increases monotonically with the depth of 321 

randomization. Note that fully randomized realizations (i.e., randomization depth of 322 

100%) are the most highly variable – akin to a gas. These highly variable realizations 323 

can be appreciated if one “boils” the scene (i.e., continues to randomize at a depth of 324 
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100% - see Movie 2). However, incremental permutations do show scale-specific 325 

expressions of variability which differ between scenes (Fig. 7C). That is, despite their 326 

featureless 1/f spatial spectra, each natural scene has a distinct signature of 327 

increasing variability at different scales. Incremental wavelet resampling thus unpacks 328 

the latent statistical frustration within natural scenes which is not uniform across scales 329 

and scenes. 330 

 331 

 332 
Figure 6: (A) Images used to demonstrate the thermodynamic properties of natural scenes. (B) 333 
Variability vs. wavelet scales. Each colored line is a single permutation of the corresponding image at 334 
one scale. Image variability is measured as the root mean squared differences between the original 335 
and scrambled image across pixels. Black lines show image averages. (C) Mean (black) across all four 336 
images  standard deviation (red). There are no trends in mean image variability. 337 
 338 
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 339 
Figure 7: (A) Wavelet-based randomization (“heating”) of a natural scene, increasing incrementally 340 
from the original scene to fully randomized in steps of 25%. (B) Variability amongst an ensemble of 341 
random realizations increases monotonically with increasing depth of randomization at all scales. (C) 342 
However, some scales (here fine and coarse) show slightly greater variability with randomization than 343 
others (here mid-scales).  344 
 345 

 346 
Movie 1: Wavelet-based randomization of a natural scene, increasing incrementally from the original 347 
scene to fully randomized. This process is akin to “heating” the scene.  348 
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 349 
Movie 2: Wavelet-based randomization of a natural scene, iteratively applied full randomization. This 350 
process is akin to constant “boiling” of the scene.  351 
 352 

The wavelet-based randomization (or heating) can easily be reversed. For example, 353 

Movie 3 shows the process of “cooling” the scene back down from a boil (i.e., a fully 354 

randomized state) to its natural state. Interestingly, we can then continue to cool the 355 

image beyond its natural state and hence approach a single ordered state – akin to a 356 

solid (Movie 4). This process of “freezing” is further demonstrated in Figure 8A, which 357 

shows the process of progressive ordering of a natural image. As can be seen in 358 

Figure 8B, the amount of variability between realizations increases to a maximum at 359 

approximately 50% of wavelets ordered, corresponding to a mixture of natural and 360 

ordered phases, then decreases again as the single ordered state is approached. 361 

Similar to the process of randomization, the incremental ordering permutations do 362 

show scale-specific expressions of variability which differ between scenes (Fig. 8C). 363 

Finally, we can “thaw” a frozen image (i.e., in a 100% ordered state) to its original, 364 

natural state (Movie 5) by progressive randomization (or heating) as described above.  365 
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 366 

 367 
Movie 3: Wavelet-based ordering of a natural scene, decreasing incrementally from the fully 368 
randomized state to the original scene. This process is akin to “cooling” the scene.  369 
 370 

 371 
Movie 4: Wavelet-based ordering of a natural scene, decreasing incrementally from the original scene 372 
to a single ordered (or “frozen”) state.  373 
 374 
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 375 
Figure 8: (A) Wavelet-based ordering (“cooling”) of a natural scene, increasing incrementally from the 376 
original scene to fully ordered in steps of 25%. (B) Variability amongst an ensemble of realizations 377 
increases to a maximum at approximately 50% of wavelets ordered, corresponding to a mixture of 378 
natural and ordered phases, then decreases again as the single ordered state is approached. (C) Some 379 
scales show greater variability with ordering than others.  380 
 381 

 382 
Movie 5: Wavelet-based randomization of a natural scene, decreasing incrementally from the single 383 
ordered (or “frozen”) state back to the original scene.  384 
 385 
 386 
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Figure 9 further demonstrates the notion of natural image thermodynamics with natural 387 

images being positioned at a critical phase between fully ordered and disordered 388 

states. Subtle manipulations of dynamic natural scenes, using wavelet resampling to 389 

parametrically disrupt the complex statistics of their criticality whilst measuring cortical 390 

dynamics, represents an elusive but untested means of understanding how the 391 

structure of cortical dynamics are tuned adaptively to those of the natural world. 392 

Interestingly, the “critical” nature of dynamic natural scenes (i.e., that they are perched 393 

between order and disorder reflecting the balance of scene stability and sudden, 394 

spontaneous transitions) mirrors the critical, avalanche-like dynamics that occur 395 

throughout cortical systems (Cocchi et al., 2017). Incremental disruption – both 396 

“heating” (randomizing) and “cooling” (ordering) – allows tuning of a natural scene 397 

through its critical point and could be used in conjunction with imaging or 398 

neurophysiological recordings to further explore this intriguing area. 399 

 400 

 401 
Figure 9: Natural images (middle column) reside near a critical boundary between order and disorder. 402 
Incremental, wavelet-based randomization (or heating) and ordering (or cooling) lead to fully disordered 403 
(right most column) vs. fully ordered states (left most column), respectively. Sandwiched between the 404 
images are plots of the variability seen across both scale and the depth of ordering or randomization 405 
when cooling or heating the natural image.  406 
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 407 

3.  Probing the visual hierarchy – an fMRI demonstration 408 

We conducted an fMRI experiment to illustrate the application of wavelet-based 409 

manipulations of natural images to probe the functional architecture of the visual 410 

hierarchy. As outlined above, there are numerous potential ways to manipulate static 411 

and dynamic natural scenes using wavelets. We designed a parametric, passive-412 

fixation task to demonstrate some of the practical considerations of performing an fMRI 413 

experiment using wavelet-degraded stimuli (e.g., number of conditions can multiply 414 

quickly, use of a fixation task aimed at controlling attentional resources, etc.). Our 415 

proof-of-principle application to a visual fMRI experiment builds upon prior research in 416 

this field with the overarching goal being to contrast levels of cortical activity in different 417 

visual regions elicited by the presentation of intact natural images vs. wavelet-418 

degraded natural images. Importantly, the basic image properties (luminance, spectra) 419 

remain the same between the two image types; only the higher-order statistical 420 

dependences (i.e., the structure of that image content) differ. To control for possible 421 

transition effects between (natural and wavestrapped) stimuli, we designed a factorial 422 

experiment which counterbalances the nature and order of their presentation. 423 

 424 

Although primarily demonstrative, the experiment was motivated by a central 425 

hypothesis: that higher visual areas would be more sensitive to the complex structure 426 

present in natural images than lower visual areas. This was motivated by decades of 427 

previous research showing that primate visual cortex is organized hierarchically, with 428 

neurons responding to increasingly complex features as one progresses up the 429 

cortical hierarchy (DeYoe and Van Essen, 1988; Felleman and Van Essen, 1991; Van 430 

Essen, 2004). 431 
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 432 

3.1 Materials and Methods 433 

3.1.1 Subjects 434 

Seven, right-handed participants (22-24 years, mean 22.9 years; 3 male, 4 female) 435 

who disavowed a history of neurological or psychiatric diseases completed a 436 

functional neuroimaging experiment. All participants had normal or corrected to normal 437 

vision. The experiment was conducted with the written consent of each participant 438 

following approval by the local human research ethics committee in accordance with 439 

national guidelines.  440 

 441 

3.1.2 Experimental design 442 

Stimuli were presented in blocks of 8 seconds while participants fixated on a small 443 

superimposed crosshair. Stimuli consisted of natural images, degraded images 444 

obtained through wavestrapping these natural images at select (fine or coarse) scales, 445 

and colored noise control images matched for luminance and spectra content obtained 446 

through wavestrapping the natural images at all spatial scales. 447 

 448 

A partial 3x2x2 within-subjects factorial design was used. The independent variables 449 

were type of image manipulation (N1: degrade from natural image, N2: degrade from 450 

noise, N3: restore from noise), spatial scale manipulated (S1: fine and S2: coarse), 451 

and presentation of manipulation (F1: flip vs. F2: flick). All experimental conditions are 452 

summarized in the Supplementary Material (S2, Table 1), with representative 453 

conditions described in detail below: 454 

 N1,S1,F1 – the fine scale information (S1) of a natural image was permuted 455 

(N1). This resulted in the degradation of the structure at that scale and hence 456 
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a natural image with all scales of structure intact except the fine scale. The 457 

experimental block involved flipping back and forth (F1) between the original 458 

image and the degraded image. 459 

 N1,S2,F2 – the coarse scale information (S2) of a natural image was permuted 460 

(N1). This resulted in the degradation of the structure at that scale and hence 461 

a natural image with all scales of structure intact except the coarse scale. The 462 

experimental block involved flicking through (F2) a series permutations of the 463 

same source image (i.e., the permutation was carried out a number of times on 464 

the same natural image, and were presented in succession during the imaging 465 

block). 466 

 N2,S2,F2 – the coarse scale information (S2) of a noise image was permuted 467 

(N2). Since we began with a noise image, there was no natural scene structure 468 

to degrade; however, the permutation was identical to what was performed on 469 

a natural image and leads to a slightly distinct noise image that differs only at 470 

the targeted spatial scale. The experimental block involved flicking through (F2) 471 

a series of permutations on the same source image.  472 

 N3,S2,F1 – the coarse scale information (S2) from a natural image was put into 473 

a noise image (N3). The experimental block involved flipping back and forth 474 

(F1) between the original noise image and the noise image with structure 475 

added. 476 

 477 

These stimuli permutations were designed to parametrically control the depth of image 478 

manipulation and the spatial scale targeted while controlling for the effects of image 479 

transitions. The factorial design was incomplete (partial) in that it was not possible to 480 

test the flick presentation type (F2) for the condition that involved adding structure to 481 
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a noise image (N3). That is, for any given natural scene there is only one possible 482 

instance of structure that can be added to remain faithful to the original scene (i.e., 483 

any alteration of this structure would change the scene). In contrast, there is no limit 484 

to the number of instances of noise images that can be constructed from each natural 485 

scene due to the randomized nature of the wavestrapped permutations. In addition to 486 

the above conditions (all of which involve a changing stimulus, whether flipping or 487 

flicking), we also included two static image block types: a natural image (N1, S0, F0) 488 

and a noise image (N2, S0, F0). An isoluminant grey background was shown as a 489 

baseline block.  490 

 491 

In total then, there were 12 different experimental block types and a baseline. Each 492 

block was presented three times per scan run. All experimental blocks were presented 493 

for 8 seconds and the grey background baseline was presented for 12 seconds. During 494 

the ON period for the stimulus blocks with image change (i.e., flip or flick), the transition 495 

occurred every 0.5 seconds. The block types were pseudo-randomized except that we 496 

ensured that each block type followed the grey background baseline condition an 497 

equal number of times and that the last block of every run was the grey background 498 

condition to permit the fMRI signal to return to baseline. 12 runs were collected per 499 

subject, in a single scan session.  500 

 501 

To control attention, aid fixation, and monitor subject alertness, a color/orientation 502 

conjunction task was performed at fixation throughout the entire run (Puckett and 503 

DeYoe, 2015; Treisman and Gelade, 1980). For this purpose, a small circle (10 x 10 504 

pixels, subtending 0.15° visual angle) was superimposed upon the images. The circle 505 

contained a pattern that randomly changed every 2 seconds among 4 possible 506 
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configurations: red horizontal, red vertical, green horizontal, and green vertical. The 507 

participant was required to report the nature of each change via one of two button 508 

presses (button 1 = red horizontal or green vertical, button 2 = red vertical or green 509 

horizontal). In addition to the color/orientation patch, a fine grid was overlaid on the 510 

images to aid fixation (Schira et al., 2007).  511 

 512 

An example of the visual stimulus and block paradigm (with annotation), is presented 513 

in the Supplementary Material (S2, Sup Movie 2).  514 

 515 

3.1.3 Image manipulation 516 

Stimuli were constructed by manipulating a set of natural images using the wavelet 517 

transform (as outlined in section 2). The natural images were sourced from the “Zurich 518 

natural images” database, which is freely available for academic use (Einhauser and 519 

Konig, 2003). Note that the subset of images from this database used here are shown 520 

in the Supplementary Material (S2, Sup Figures 1 and 2). In general, constructing the 521 

stimuli involved: converting the RGB image to greyscale, permuting the detail 522 

coefficients at a specific spatial scale (or scales) using the wavelet transform, resizing 523 

the image (to 768x768, subtending 11° visual angle), and then adjusting the luminance 524 

values so that the resampled amplitude spectra matched those from the original 525 

natural images. More specifically: 526 

 To degrade a single spatial scale of natural image structure (factor N1), we 527 

permuted the coefficients associated with one of two spatial scales (i.e., levels): 528 

fine (S1) and coarse (S2). Note that the coefficient levels corresponding to fine 529 

and coarse natural image structure are dependent on the input image size and 530 

were determined empirically. For this, we permuted the coefficients across a 531 
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series of levels and chose the two levels corresponding to fine and coarse 532 

natural image structure by visual inspection. Note that the fine scale 533 

manipulation targeted structure in the range of 4.5 - 8.8 cycles per degree and 534 

the coarse scale manipulation targeted structure in the range of 1.3 – 2.4 cycles 535 

per degree.      536 

 To construct noise images that shared the same basic image properties as our 537 

natural images (factor N2), we simply performed the wavelet degradation on 538 

the natural images across all spatial scales. This destroys all natural image 539 

structure, leaving a noise image with the same 1/f frequency distribution as the 540 

original natural image.  541 

 To put natural image back into a noise image (factor N3), we first degraded all 542 

the spatial scales except that of interest (i.e., all but S1 or S2). Then we 543 

degraded the remaining structure at that scale. This produced a pair of images: 544 

one noise image (all scales permuted) and another that was identical to the 545 

noise image except that one spatial scale of information still remained.  546 

 547 

All wavelet resampling was performed using Daubechies wavelets, which are a family 548 

of orthogonal wavelets characterized by a maximal number of vanishing moments 549 

while minimising asymmetry (here we used the db6 wavelet with 6 vanishing 550 

moments). To avoid edge effects when performing the wavelet degrading, which 551 

manifest as sharp horizontal or vertical striping in the image, we did not perform the 552 

wavelet degradation over the entire image. Instead, we left an outer border (1/20th of 553 

the image size) untouched around the entire image. After the detail coefficients 554 

associated with spatial locations inside this border were permuted, the image was 555 

cropped so that only the permuted portion remained.  556 
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 557 

3.1.4 Retinotopic localizer 558 

To localize cortical responses to visual images, we performed two types of phase-559 

encoded retinotopic mapping: one to map polar angle and the other to map eccentricity 560 

representations. Briefly, the polar angle stimulus consisted of a rotating bowtie (two 561 

wedges opposite one another and meeting at fixation) and the eccentricity stimulus 562 

consisted of an expanding ring (Schira et al., 2009). The aperture contained one of 563 

three colored texture patterns (checkers, expanding and contracting spirals, or rotating 564 

sinusoidal gratings) which changed randomly every 250 ms. Participants performed a 565 

fixation color detection task at a central maker, and a fixation grid was overlaid atop 566 

the stimuli.  567 

 568 

3.1.5. Magnetic resonance imaging data acquisition 569 

Data were acquired on a Philips 3T Achieva X Series equipped with Quasar Dual 570 

gradients and a 32-channel head coil. Whole-brain, anatomical images were collected 571 

using a magnetisation-prepared rapid acquisition with gradient echo MPRAGE 572 

sequence with a TE of 2.8 ms, TR of 6.3 ms, flip angle of 8 degrees, FOV of 256 mm 573 

x 256 mm, a matrix size of 340 x 340, and 250 slices that were 0.75 mm thick – 574 

resulting in an isotropic voxel size of 0.75 mm.  575 

 576 

The voxel resolution of the functional echo planar images (EPIs) collected here was 577 

1.5 x 1.5 x 1.5 mm3 across 31-32 oblique coronal slices covering the occipital pole. 578 

EPIs were acquired with a TR of 2 s, a TE of 25 ms, a SENSE factor of 2, a 128 x 128 579 

matrix (ascending acquisition), and a FOV of 192 mm. For polar angle mapping 186 580 

volumes were collected, for eccentricity mapping 174 volumes were collected, and for 581 
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the natural image experiment 184 volumes were collected. Before data analysis, the 582 

first few volumes were discarded to account for the high T1 saturation that occurs at 583 

the beginning of a scan. For both mapping protocols the first 6 volumes were 584 

discarded, and for the natural image experiment the first 4 volumes were discarded.  585 

 586 

3.1.6 Data analysis 587 

Pre-processing of the functional data was performed using SPM8 (SPM software 588 

package, Wellcome Department, London, UK; http://www.fil.ion.ucl.ac.uk/spm/). Data 589 

were motion corrected using a rigid body transform and 7th degree B-spline 590 

interpolation. Images were slice scan time corrected using the first image as the 591 

reference slice and resliced into the space of the first image. 592 

 593 

For retinotopic mapping, “traveling-wave” analysis procedures were conducted using 594 

the mrVista Toolbox (Stanford University, Stanford, CA; 595 

http://white.stanford.edu/software/). The cyclic retinotopic mapping data was analysed 596 

using a fast Fourier transform based correlation analysis, as built in the mrLoadRet 597 

software from the mrVISTA toolbox. This estimates a coherency value for each voxel 598 

in the cortex as a ratio between the power at the stimulus frequency and noise. The 599 

retinotopic location (both polar angle and eccentricity) for each voxel was determined 600 

by the phase value at the stimulus frequency. The retinotopy data were then displayed 601 

on a 3D rendered brain surface (Engel et al., 1997; Schira et al., 2009).  602 

 603 

Volumetric segmentation of white matter was performed manually using ITK Gray 604 

(Yushkevich et al., 2006). 3D surface reconstructions of the left and right hemisphere 605 

were generated using mrMesh (a function within the mrVista Toolbox) by growing a 3-606 

http://www.fil.ion.ucl.ac.uk/spm/
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voxel thick layer (1.5 mm isotropic voxels) above the grey/white boundary. To improve 607 

data visualisation (i.e. when projecting functional data onto surfaces), these surfaces 608 

were also computationally-inflated using the “smoothMesh” option in mrMesh (8 609 

iterations). Note that the cortical surface models were only used for data visualization 610 

and region-of-interest (ROI) definition. All analyses and statistics were performed 611 

using the volumetric data.  612 

 613 

Further analysis in the mrVista Toolbox included a general linear model (GLM) of 614 

responses across early visual areas (V1, V2, V3) for each individual subject. The 615 

Boynton Gamma HRF was used to model the haemodynamic response function 616 

(Boynton et al., 1996). All runs were concatenated and the null grey background 617 

condition was used as baseline.  618 

 619 

3.2 Results 620 

We first used the retinotopic mapping data to define V1, V2, and V3 ROIs in both 621 

hemispheres for each individual (Fig. 10). We then extracted the GLM-derived -622 

weights associated with each experimental condition from all voxels in each ROI. The 623 

mean -weight was then computed for each visual area, combining both hemispheres.  624 

 625 

Figure 11A shows the average response in each of the visual area ROIs for each 626 

condition across all subjects. Inspection of Figure 11A reveals a few salient, interesting 627 

response differences across visual areas and across experimental conditions. 628 

Notably, as one progresses up the visual hierarchy (V1→V2→V3), the response 629 

amplitude decreases across all conditions. It also appears that, in general, the natural 630 

images elicit greater activation than the noise images (N1>N2,N3). This is true not 631 



 31 

only for the conditions involving image manipulation, but also for the no manipulation 632 

conditions (N1,S0,F0 vs. N2,S0,F0). However, the degree of difference between 633 

natural image (N1) vs. noise image (N2) conditions appears to become greater as one 634 

progresses up the hierarchy.  635 

 636 

 637 
Figure 10. Defining visual area ROIs. For each individual subject, early visual cortex was partitioned 638 
into V1, V2, and V3 ROIs using polar angle retinotopic mapping data. On the far left is an inflated cortical 639 
surface model for the left hemisphere of a single subject. Next to that is a zoomed-in view of the occipital 640 
cortex showing the polar angle retinotopic map (un-thresholded). On the right is the same zoomed-in 641 
view of the occipital cortex, showing the three visual area ROIs overlaid upon the curvature pattern.   642 
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 643 
Figure 11. Activation across the early visual hierarchy for intact vs. degraded natural images. (A) Group 644 
averaged -weights for all experimental conditions in each visual areas ROI. Error bars represent SEM 645 
across individuals. (B) -weights in each visual area ROI for the different types of image manipulations 646 
(N1: degrade from natural image, N2: degrade from noise, N3: restore from noise), collapsed across all 647 
other factors. (C) -weights across eccentricity for both scale conditions in each visual area, collapsed 648 
across other factors. Ecc 1 to Ecc 6 range from the fovea to the periphery (0.06 ≤ Ecc 1 ≤ 0.48; 0.48 649 
≤ Ecc 2 ≤ 0.95; 0.95 ≤ Ecc 3 ≤ 1.36; 1.36 ≤ Ecc 4 ≤ 1.93; 1.93 ≤ Ecc 5 ≤ 2.74; 2.74 ≤ Ecc 6 ≤ 3.89 650 
degrees). For (B) and (C), whiskers with caps show min/max, bottom and top edges of boxes indicate 651 
25th and 75th percentile, and central line marks the median across all participants.  652 
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 653 

Qualitative assessment of Figure 11A appears to support the core hypothesis that 654 

higher cortical areas are more sensitive to more complex statistical features of natural 655 

scenes than V1 (i.e., cortical areas respond more strongly when natural image 656 

structure is present than when absent and this difference increases as one progresses 657 

up the hierarchy). To test this, we collapsed the data across the spatial scale (S1 and 658 

S2) and presentation (F1 and F2) factors, and removed the static, no manipulation 659 

conditions (N1,S0,F0 and N2,S0,F0; Figure 11B). We then performed a 2-way 660 

repeated measures ANOVA to investigate if the visual areas differentially responded 661 

to the different image manipulations (N1, N2, and N3). We found that a differential 662 

response was indeed present. That is, in addition to significant main effects for both 663 

visual area [F=52.3, p<0.001] and the type of image manipulation [F=11.2, p=0.0018], 664 

there was also a significant interaction effect [F=16.6, p<0.001]. Looking at Figure 665 

11B, it appears that the interaction effect reflects an increasing effect of natural image 666 

structure on the responses as one progresses from V1 to V3. Recall that N1 is a 667 

natural image with one scale of structure degraded, N2 is essentially a noise image 668 

(all scales of structure degraded), and N3 is mostly a noise image but still has one 669 

scale of structure present. Hence, N1 has the most natural image structure, N3 the 670 

second most, and N2 has the least. In V1, there is little difference among the three 671 

conditions suggesting that V1 is only weakly influenced by the presence versus 672 

absence of the higher-order correlations that characterize natural image structure. In 673 

V2, however, the effect of image type on the average response becomes stronger and 674 

appears graded by the amount of structure present. This same differential response 675 

is further pronounced in V3.  676 

 677 
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Sensitivity to different spatial scales is known to vary as functions of both visual area 678 

and eccentricity. That is, receptive field size increases up the visual hierarchy and at 679 

increasingly peripheral eccentricities (Dumoulin and Wandell, 2008). We hence also 680 

explored the effect of the scale condition (S) and its interaction with visual area and 681 

eccentricity. For this, we first sub-divided each visual area ROI into 6 eccentricity 682 

bands using the retinotopic mapping data (0.06 ≤ Ecc 1 ≤ 0.48; 0.48 ≤ Ecc 2 ≤ 0.95; 683 

0.95 ≤ Ecc 3 ≤ 1.36; 1.36 ≤ Ecc 4 ≤ 1.93; 1.93 ≤ Ecc 5 ≤ 2.74; 2.74 ≤ Ecc 6 ≤ 3.89 684 

degrees). We collapsed the data across the presentation (F1 and F2) and image 685 

manipulation (N1, N2, and N3) factors, and removed the static, no manipulation 686 

conditions (Figure 11C). We then performed a 3-way repeated measures ANOVA 687 

finding a significant main effect again for visual area [F=37.0, p<0.001] as well as 688 

significant main effects for eccentricity [F=3.5, p=0.014] and scale [F=80.6, p<0.001]. 689 

There were also significant interaction effects between visual area and eccentricity 690 

[F=3.3, p=0.002] as well as between eccentricity and scale [F=4.5, p=0.004] but not 691 

between visual area and scale [F=1.3, p=0.303] nor among the three [F=0.6, p=0.804]. 692 

Looking at Figure 11C, the main effects are clear. For visual area, we see a general 693 

diminishing of the response as one progresses up the visual hierarchy (similar to the 694 

effect of area seen in Figure 11B). For eccentricity, we see a the same basic inverted-695 

U pattern across eccentricity for each combination of spatial scale condition and visual 696 

area except for the fine scale condition in V3 (likely driving the interaction effect). For 697 

the scale condition, we see consistently greater responses to the coarse scale 698 

manipulation compared to the fine scale (also clearly seen in Figure 11A), particularly 699 

at intermediate eccentricities.  700 

 701 
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With respect to the scale effect, note that the process of wavestrapping a noise image 702 

(N2) simply results in another noise image since no structure was originally present. 703 

However, it is important to understand that the resulting noise image is still different 704 

from the source noise image, and the difference is dependent on the manipulated 705 

scale. Therefore, when the images are presented by flicking between or flipping 706 

through the different instances, changes in the image occur at the targeted spatial 707 

scale. From our results then, it appears that when the changes occur at the coarse 708 

scale, a higher degree of activity is seen in visual cortex compared to when the 709 

changes occur at the fine scale. The perceptual difference between the fine and 710 

coarse scale resampling of noise can be seen by contrasting conditions N2,S1,F1 vs. 711 

N2,S2,F1 or N2,S1,F2 vs. N2,S2,F2 in Supplementary Movie 2.  712 

 713 

Note that the primary motivation for ‘flipping’ or ‘flicking’ across multiple instances 714 

within a block was to make the stimuli “dynamic” and hence more salient to the visual 715 

system compared to using a static image across the block duration. The choice of 716 

flipping versus flicking was selected to probe the role of prior context on visual 717 

responses – i.e. whether a statistical violation (the wavelet-degraded scale) would 718 

have a greater cortical salience when introduced in and out of a preserved scene (F1), 719 

or whether the violation would accrue a stronger response when continually presented 720 

(F2). Whereas the dynamic conditions did elicit greater responses than their 721 

corresponding static conditions (Figure 11A), we did not find any main effect of the 722 

presentation factor (F1 vs. F2) [F=0.2, p=0.681] nor an interaction with visual area 723 

[F=3.4, p=0.067] when conducting a 2-way repeated measures ANOVA. 724 

  725 

4. Discussion 726 
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Sensory and cognitive neuroscience has traditionally employed simple, abstract, and 727 

narrowband stimuli to examine cortical response properties. These stimuli have 728 

served the field well, offering a way to tightly control variables of interest and leading 729 

to an extensive characterization of the response of single neurons and populations of 730 

neurons to basic image properties such as luminance, contrast, orientation, and 731 

spatial frequency. Despite this, these stimuli lack ecological validity as they rarely 732 

come close to approximating the types of stimuli encountered in typical sensory 733 

experiences outside of experimental conditions. Pertinently, there is mounting 734 

evidence suggesting that the cortex may be more strongly ‘tuned’ to the statistical 735 

properties of naturalistic stimuli (for review, see Sonkusare et al., (2019)). For 736 

example, a recent study (Isherwood et al., 2017) using broadband noise stimuli 737 

observed that stimuli with 1/f spectra close to that of natural scenes (i.e.,  = 1.25, 738 

Figure 1C) elicited stronger BOLD responses than stimuli with 1/f spectra outside of 739 

the natural range (i.e.,  = 0.25 or  = 2.25). Interestingly, this apparent tuning of the 740 

cortex to the spectra of natural stimuli is mirrored by visual sensitivity and preference 741 

at the behavioral level. Discrimination sensitivity, detection sensitivity, as well as 742 

aesthetic preference are highest for noise stimuli with natural 1/f spectra and lowest 743 

for unnatural 1/f spectra (Spehar and Taylor, 2013; Spehar et al., 2015). This 744 

supports the notion that the visual system is tuned to the statistical properties of natural 745 

scenes. Findings such as these highlight the importance of using more complex, 746 

naturalistic stimuli in neuroscientific pursuits. 747 

 748 

The benefit of complementing studies using traditional, abstract stimuli with those that 749 

use more ecological stimuli is clear. The use of naturalistic stimuli, however, is still 750 

relatively nascent, and as such, considerable challenges remain. One such issue is 751 
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determining how to manipulate these naturalistic stimuli with sufficient control and 752 

rigor. Seminal early work disrupted the temporal narrative by sharp block shuffling of 753 

movie segments in the time domain to unveil large-scale temporal hierarchies in the 754 

cortex (Hasson et al., 2008). The wavelet approach outlined in the present manuscript 755 

offers an alternative, more nuanced opportunity in this direction to turn the focus on 756 

hierarchies in the visual system. Our work demonstrates that it is possible to 757 

parametrically and subtly manipulate the complex statistical properties of natural 758 

scenes with a high degree of control and flexibility – and that the visual system is 759 

sensitive to these subtle manipulations.  760 

 761 

There are a wide range of ways that wavelets can be used to manipulate stimuli to 762 

probe functional effects of natural scene statistics in the visual hierarchy, some of 763 

which were described in Part 1.  The neuroimaging study here (Part 2) makes use of 764 

one of these, demonstrating some of the practical considerations of performing an 765 

fMRI experiment using wavelet-degraded stimuli. In doing so, we found evidence in 766 

support of our main hypothesis (that higher hierarchical regions in visual cortex are 767 

more sensitive to natural scene statistic). These results are convergent with other 768 

recent research, using substantially different visual stimuli, showing that sensitivity to 769 

the distinctive higher-order correlations of natural scenes begins to arise in visual area 770 

V2. For example, Freeman et al., (2013) found that generated, naturalistic texture 771 

stimuli (with higher-order correlations) differentially modulated cortical responses in 772 

V2 but not V1 compared to spectrally matched noise (without the higher-order 773 

correlations). Notably, comparable results were found by the authors using both fMRI 774 

in humans and neural recordings in macaque. Yu et al. (2015) similarly showed that 775 

many neurons in macaque V2 (but few in V1) are sensitive to higher-order properties 776 
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of natural scenes. Rather than degrading natural images as done in the present study 777 

or constructing stimuli that mimic naturalistic textures (Freeman et al., 2013), Yu et al. 778 

used binary textures that were highly unnatural, but isolated specific multipoint 779 

correlations characteristic of natural images (i.e., the statistics of the combinations of 780 

luminance values that appear in several points of a natural image) (Hermundstad et 781 

al., 2014; Tkacik et al., 2010). Note that the uniform textures generated by Freeman 782 

et al. (2013) appears more “natural” than the binary textures (Yu et al., 2015), although 783 

both can be easily visually disambiguated from an actual natural image as they lack 784 

the contextual information and complex variability present in natural scenes. It is clear 785 

then, that although selectivity to higher-order correlations in natural images begin to 786 

arise in V2, future work is required to determine where along the hierarchy further 787 

selectivity to additional natural image structure emerges.  788 

 789 

The human visual system is composed of many functionally distinct cortical visual 790 

areas (Grill-Spector and Malach, 2004; Zeki et al., 1991). Sensory-driven responses 791 

tend to decrease as one progress up the visual hierarchy, and as such, our finding 792 

that responses to all of our stimuli decrease as one progresses up the visual hierarchy 793 

is unsurprising. Notably, however, we also found that the higher cortical areas appear 794 

to be more sensitive to the complex visual features – that is, the decrease in responses 795 

up the visual stream was more pronounced for wavelet resampled stimuli. The present 796 

application to fMRI data thus suggests that the higher order structure being degraded 797 

by the wavelet technique is directly related to the complex features that the higher 798 

visual areas encode. That is, cells along the visual hierarchy become increasingly 799 

sensitive to the conditional dependences among multiple neurons in lower hierarchical 800 

levels, mirroring the complex conditional dependences in unaltered natural scenes. 801 
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Presumably, this effect would be stronger in even higher-order areas; however, our 802 

data are insufficient to test this. Due to the size and orientation of our fMRI acquisition 803 

slab, we only have partial coverage of hV4 for most participants. In addition, time 804 

constraints restricted the number of runs of each retinotopic mapping stimulus – 805 

limiting the data quality and thus our ability to confidently demarcate higher-order 806 

dorsal and lateral areas. Future studies could be designed to circumvent this issue, 807 

for example by having a separate scan session dedicated to the collection of a 808 

comprehensive, high-quality retinotopic mapping dataset.  809 

 810 

One powerful aspect of the wavelet-based approach outlined here is the ability to 811 

target structure at specific spatial scales. As mentioned, receptive field size and hence 812 

spatial frequency sensitivity is known to vary both across visual areas as well as 813 

across eccentricities within a visual area (Dumoulin and Wandell, 2008; Yoshor et al., 814 

2007). By combining the experiment with fMRI-based estimates of population 815 

receptive field sizes (Dumoulin and Wandell, 2008; Zeidman et al., 2018), future 816 

studies will be able to take a more detailed look at the relationship between cortical 817 

activity related to specific scales of natural image structure and the underlying 818 

receptive field sizes. Our preliminary results suggest that manipulations to coarse 819 

scales elicit stronger results across the visual cortex than manipulations to the small 820 

scales. Interestingly, this is found when wavestrapping the noise images (N2) as well 821 

as those with structure present (N1). Although the mean perturbation across the 822 

images and realizations do not show a scale-specific effect, the variability is higher at 823 

coarser scales (see Fig. 11). Hence the greater responses to coarse scale 824 

manipulations (S2) compared to the fine scale manipulations (S1) may either reflect 825 

stronger neuronal sensitivity to coarse scale information or encoding of the trial-to-trial 826 
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variability. In studying the effect of scale, it will also be important to test across the full 827 

range of spatial scales, rather than only two as done in the present study. Full-range, 828 

parametric studies are necessary to reveal any important non-monotonicity that might 829 

be present in the response properties (Rainer et al., 2001).  830 

 831 

Although participants in our experiment attended to a fixation task while passively 832 

viewing raw and altered static natural images presented in successive transitions, it is 833 

important to note that perception in the wild is embedded in a broader action-834 

perception cycle (Fuster, 2002). It thus makes sense to not only use wavelet 835 

resampling to degrade the spatial and temporal statistics, but to do so while 836 

participants freely view movies (i.e., with unrestricted eye movements). As reviewed 837 

above, wavelet resampling is directly applicable to dynamic, spatio-temporal stimuli 838 

(S2, Sup Movie 1) – and there exists several different ways of achieving this: 839 

preserving, destroying, or manipulating the complex temporal statistics embedded in 840 

dynamic natural scenes. Block resampling is one variant of this broader class, 841 

preserving the temporal structure within blocks but degrading the temporal spectra – 842 

precisely and only at the time-scale of the block.  843 

 844 

As a final consideration, image manipulations of higher order statistics could be made 845 

at the time of saccades, during fixational eye movements, or during scene transitions 846 

– introducing subtle stimulus errors into the active stream of visual perception, while 847 

avoiding low-level changes in luminance, contrast, or spectra. This inclusion of 848 

parametric prediction errors would allow novel probes of the predictive coding 849 

principles of visual function (Edwards et al., 2017; Friston, 2005; Vetter et al., 2012). 850 

Other recent work has used wavelet resampling to construct dynamic stimuli from a 851 
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static natural scene by cyclically permuting the wavelet scales, hence tuning a static 852 

scene in and out of its (preserved) noise context (Koenig-Robert and VanRullen, 2013; 853 

Koenig-Robert et al., 2015). This approach allows cyclic presentation of both expected 854 

and surprising semantic content (of the natural scene) while keeping the spectral 855 

properties of the stimulus constant (unlike a traditional event related paradigm), thus 856 

probing cortical hierarchies for their role in predictive coding and error responses 857 

(Gordon et al., 2019a; Gordon et al., 2017; Gordon et al., 2019b).   858 
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Supplementary Material  1005 

S1: Wavelet resampling of natural images 1006 

S1.1 Multiresolution wavelet decomposition 1007 

Wavelet resampling has been described before (Breakspear et al., 2003) but is given 1008 

here for completeness. Suppose we have a grey-scaled image sampled on a two-1009 

dimensional grid over a finite domain, yielding a pixel-wise matrix of non-negative 1010 

amplitude intensities, 𝜉(𝑥, 𝑦). The technique commences with a multi-resolution 1011 

decomposition of the image 𝜉 by the discrete wavelet transform (DWT). This is a 1012 

representation of the image across a hierarchy of spatial and/or temporal scales. At 1013 

each scale j, the image is decomposed into two orthogonal components: the detail 1014 

coefficients dj,k, which contain information about the fluctuations in signal intensity at 1015 

that scale, and the approximation coefficients aj,k, which represent the residual of the 1016 

signal after those and all smaller details have been removed. The index k is a 1017 

translation matrix which codes the position of the coefficients in space. The original 1018 

signal can be recovered without loss by linearly adding the approximation of the signal 1019 

at any scale together with the details at that and all smaller scales. 1020 

Wavelets are families of basis functions that permit such a decomposition. A family of 1021 

wavelet functions {𝜑𝑗,𝑘} is generated through dilation (by scale factor j) and translation 1022 

(by position factor k) of a single “mother” wavelet function 𝜑. Uniquely associated with 1023 

each mother wavelet function is a family of scaling functions {𝜙𝑗,𝑘} generated by 1024 

dilation and translation of a single “father” scaling function 𝜙. Wavelet and scaling 1025 

functions have a finite support and code image intensity at a specific scale and local 1026 

position. Convolution of the signal with the wavelet functions 𝜑𝑗,𝑘 produces the detail 1027 
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coefficients dj,k. Convolution with the scaling functions 𝜙𝑗,𝑘 produces the approximation 1028 

coefficients dj,k. Hence, a multi-scale decomposition of an image 𝜉 at scale J is given 1029 

by 1030 

𝜉 = ∑ 𝑎𝐽,𝑘𝜙𝐽,𝑘 + ∑ ∑ 𝑑𝑗,𝑘𝜑𝑗,𝑘

𝑘𝑗≤𝐽

.

𝑘

 1031 

For the discretely sampled image 𝜉(𝑥, 𝑦), the coefficients vanish outside of a closed 1032 

interval, and hence the number of terms in the sum is finite. We use the notation that 1033 

j = 1 is the smallest scale (determined by the sampling frequency). The DWT is a 1034 

dyadic decomposition in the sense that the wavelet functions at each scale are dilated 1035 

by a factor of two between each level (from fine to coarse) and the number of 1036 

coefficients is halved in each direction. For a one-dimensional signal 𝜉(𝑥) of length S, 1037 

the number of detail coefficients Nj at scale j is, 1038 

𝑁𝑗 = 𝑆
2𝑗⁄ + 𝑙, 1039 

where 𝑙 is a small integer that allows the edges of the signal to be covered and 1040 

depends on the support width of the wavelet functions. For the two-dimensional image 1041 

𝜉(𝑥, 𝑦), the detail coefficients are further decomposed into horizontal 𝑑𝑗,𝑘
𝐻 , vertical 𝑑𝑗,𝑘

𝑉 , 1042 

and diagonal 𝑑𝑗,𝑘
𝐷  components. There are hence 3 × (𝑁𝑗)

2 coefficients at each scale of 1043 

a decomposition of a two-dimensional data set.  1044 

S1.2 Two-Dimensional Wavestrapping  1045 

For certain classes of random processes, the wavelet transform whitens (decorrelates) 1046 

the data (see Bullmore et al., 2001; Bullmore et al., 2003). That is, correlations 1047 

between nearby detail coefficients 𝑑𝑗,𝑘
𝐷   and 𝑑𝑗,𝑘±1

𝐷  are much weaker (and possibly 1048 
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uncorrelated) than correlations between neighbouring image pixels 𝜉(𝑥, 𝑦) and 1049 

𝜉(𝑥 ± 1, 𝑦 ± 1). As a result, the wavelet coefficients can be considered “exchangeable” 1050 

in the sense that they can be permuted amongst themselves without destroying 1051 

correlations within the reconstructed data. This property of exchangeability of wavelet 1052 

coefficients is a key criterion for validity of wave-strapping schemes. In short, wave-1053 

strapping in its simplest form proceeds by wavelet transform of a spatial image, 1054 

followed by random permutation of detail coefficients within each level of the 1055 

decomposition; and then inverse wavelet transform of the permuted coefficients. That 1056 

is, within each scale j, we take a random permutation of the set of translation matrices, 1057 

𝑘′ = randperm(𝑘). Then we reconstruct a wavelet degraded signal,  1058 

𝜉′ = ∑ 𝑎𝐽,𝑘𝜙𝐽,𝑘 + ∑ ∑ 𝑑𝑗,𝑘′𝜑𝑗,𝑘′

𝑘′𝑗≤𝐽𝑘

 1059 

Note that the approximation coefficients are not decorrelated and are not permuted. 1060 

Scale specific permutations are constructed by choosing one of more specific scales 1061 

j’ and only permuting detail coefficients within that scale, 1062 

𝜉 = ∑ 𝑎𝐽,𝑘𝜙𝐽,𝑘 + ∑ ∑ 𝑑𝑗,𝑘𝜑𝑗,𝑘

𝑘𝑗≠𝑗′

+ ∑ 𝑑𝑗′,𝑘′𝜑𝑗′,𝑘′

𝑘′𝑘

. 1063 

Note that the identical permutation must be applied to the vertical, horizontal and 1064 

diagonal coefficients within each scale.  1065 

A color image is composed of three color palettes, 𝜉 = 𝜉𝑦 + 𝜉𝑚 + 𝜉𝑐. To avoid color 1066 

mixing, the identical permutation must be applied to each of the three colors. 1067 

Numerically this can be achieved simply be resetting the random seed to the same 1068 

value at the start of each separate resampling. 1069 
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Partial resampling is achieved by randomly selecting a proportional subset of 1070 

coefficients at each scale and permuting exclusively amongst that set.  1071 

For images with very strong correlations, the wavelet transform may not completely 1072 

decorrelate the data. If this occurs then the reconstructed data will be whiter – i.e., 1073 

correlations amongst neighbouring pixels in the reconstructed images 𝜉′ will be weaker 1074 

than those in the original image 𝜉 and the corresponding spectra will be flatter. Various 1075 

schemes exist to address this problem (Breakspear et al., 2003). However, we did not 1076 

encounter whitening with our 1 𝑓2⁄  images and used simple permutation. 1077 

Because the detail coefficients are uncorrelated, they can be re-arranged according 1078 

to any scheme without disrupting the correlations and spectra of the reconstructed 1079 

image. Wavelet resampling classically proceeds with a random permutation, 1080 

destroying higher order correlations within and between scales. “Freezing” an image 1081 

in the wavelet domain proceeds by defining a single, unambiguous ordering of the 1082 

coefficients that decreases the conditional entropy within and between scales. 1083 

Following thermodynamic principles, we imposed an anti-magnetic scheme. This is 1084 

achieved by rank ordering the coefficients at each scale from most positive to most 1085 

negative. The first half of this re-ranked list are then assigned to the odd pixels, in 1086 

descending order. The second half of the list are then assigned to the even pixels in 1087 

ascending order. Hence neighbouring pixels are opposite in sign and the largest in 1088 

magnitude are directly adjacent. This yields a clear and well-defined relationship 1089 

between all coefficients at all scales.  1090 

The code for these schemes are available at the authors’ github repository.   1091 
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S2: Examples of wavelet application and experimental stimuli 1092 

 1093 
Sup Movie 1. Movie clip with spatial structure degraded using the wavelet technique. Note that the 1094 
temporal structure was fully preserved by using the same random seed when degrading the structure 1095 
in each frame (and each color channel within each frame).  1096 
 1097 
Sup Table 1. Main experimental factors and conditions for the partial 3x2x2 within-subjects factorial 1098 
design. The independent variables were type of image manipulation (N1: degrade from natural image, 1099 
N2: degrade from noise, N3: restore from noise), spatial scale manipulated (S1: fine and S2: coarse), 1100 
and presentation of manipulation (F1: flip vs. F2: flick). 1101 

Experimental factor 
Experimental 

Condition Type of image 
manipulation 

Spatial scale 
manipulated 

Presentation of 
manipulation 

N1 

S1 
F1 N1,S1,F1 

F2 N1,S1,F2 

S2 
F1 N1,S2,F1 

F2 N1,S2,F2 

N2 

S1 
F1 N2,S1,F1 

F2 N2,S1,F3 

S2 
F1 N2,S2,F1 

F2 N2,S2,F2 

N3 
S1 F1 N3,S1,F1 

S2 F1 N3,S2,F1 

*Note that two static image block types were also included: a natural image (N1, S0, F0) and a noise 1102 
image (N2, S0, F0) along with an isoluminant grey baseline. 1103 

 1104 
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 1105 

Sup Movie 2. Example of each stimulus block type used during the fMRI experiment. Note: the 1106 
condition labels (bottom) were not present during the experiment.  1107 

 1108 
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 1109 

Sup Figure 1. Thumbnails showing the intact greyscale natural images used during the experiment. 1110 
See Figure S2 for the second half of the stimulus set.  1111 
 1112 
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 1113 

Sup Figure 2. Thumbnails showing the intact greyscale natural images used during the experiment. 1114 
See Figure S1 for the first half of the stimulus set.   1115 
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S3: Hierarchical model of natural images 1116 

An alternative multi-level decomposition of a grey-scaled matrix of image intensities 1117 

was recently given by Saremi and Sejnowski (2013), 1118 

𝜉 = ∑ 𝑏𝐿−𝜆

𝐿

𝜆=1

𝐵𝜆, 1119 

where the integer 𝑏 > 1 is the base of the representation, 𝐵𝜆 are non-negative 1120 

matrices with values 0 < 𝐵𝜆 < 𝑏 − 1, and L is the length of the representation. 𝐵𝜆 are 1121 

found iteratively, starting from 𝜆 = 1. Supplementary Figure 3 shows an example of 1122 

this representation acting on a natural grey-scale image. The mid-level transition from 1123 

completely ordered levels (1-3), through a partly ordered, critical phase (levels 4-6) to 1124 

the disordered phase (levels 7-8) are evident.  1125 

 1126 

 1127 
Sup Figure 3: (A) Natural image from the van Hateren image database 1128 
(http://bethgelab.org/datasets/vanhateren/). (B) The 8 level decomposition showing a transition for 1129 
ordered levels (1-3) to a disordered one (7-8) through an intermediate critical phase. 1130 
 1131 

There are some similarities to a DWT in the sense that there is an iterative operation 1132 

up to a length L (here) or J (with the DWT). However, unlike a DWT, the levels of the 1133 

representation have the same dimensions as the original image 𝜉 and are not dyadic 1134 
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or downsized, even if b=2. The operation works only on the intensity values of the 1135 

image and does not depend on the local spatial contrast. For this reason, the multi-1136 

level decomposition of a wavelet resampled image (or even a completely permuted 1137 

raw image) are the same as the original image, as long as the amplitude distribution 1138 

is preserved (Sup Figure 4). 1139 

 1140 

 1141 
Sup Figure 4: (A) Wavelet-resampled derivative from Sup Fig 3 and (B) its 8 level decomposition. 1142 
 1143 
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The code used to manipulate the natural images will be made freely available by time 
of publication via GitHub. The original consent provided by the fMRI participants only 
permits data sharing among scientific collaborators of the named investigators. Please 
contact the corresponding author regarding data access.  
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